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Zusammenfassung

Im Rahmen dieser Studienarbeit wird fiir ein 4-knotiges Scheibenelement die
,Enhanced Assumed Strain“-Formulierung angewendet, um die bei isoparametri-
schen Elementen bekannten Schubversteifungseffekte aufzuheben. Es werden diese
Lockingeffekte kurz erlidutert. Ausgehend vom isoparametrischen 4-knotigen Schei-
benelement, wird der lineare Ansatz der EAS-Methode vorgestellt und dann auf
den physikalisch nichtlinearen Ansatz erweitert. Weiterhin werden Beispiele vor-
gestellt, die zum einen eine Kontrolle der Elementimplementierung gewéhrleisten
und zum anderen die Verbesserung des isoparametrischen 4-knotigen Scheibenele-
mentes durch die EAS-Formulierung zeigen.

Das 4-knotige Scheibenelemente mit EAS-Formulierung wurde in das FE-Programm-

system SI[&1E implementiert.



AUFGABENSTELLUNG i

04.11.2002

Bauhaus-Universitit Weimar
Institut fiir Strukturmechanik

Aufgabenstellung fiir die Studienarbeit von Herrn Maik Brehm

Implementation eines 4-knotigen EAS-Scheibenelementes fiir
physikalisch nichtlineare Berechnungen

Im Rahmen der Studienarbeit soll fiir ein 4-knotiges Scheibenelement die ,, Enhanced
Assumed Strain“-Formulierung angewendet werden, um die bei isoparametrischen Ele-
menten bekannten Schubversteifungseffekte aufzuheben. Dabei ist die Methode zunéchst
fiir den gebrauchlichen linearen Ansatz vorzustellen. Die verbesserten Elementeigenschaf-
ten gegeniiber dem isoparametrischen Element sind aufzuzeigen.

Fiir nichtlineare Berechnungen ist eine direkte Ermittlung der EAS-Parameter nicht
moglich. Daher sind verschiedene Mdéglichkeiten der iterativen Bestimmung vorzustel-
len und hinsichtlich ihrer numerischen Aufwendigkeit und des Konvergenzverhaltens zu
diskutieren. Die Funktionsfahigkeit der gewédhlten Methode ist an einem Beispiel unter
Aktivierung der EAS-Moden nachzuweisen (z.B. plastizierender Kragtrager unter End-
momentenbelastung). Zum Nachweis der korrekten Implementation des Elementes hin-
sichtlich der richtigen Wiedergabe konstanter Spannungszustéande ist der Patch-Test fiir

den linearen und nichtlinearen Fall vorzustellen und anzuwenden.

Kandidat: cand.-Ing. Maik Brehm
Matrikelnummer: 980035
Seminargruppe: B/98/A

Bearbeitungszeitraum: 07.11.02 bis 19.12.02; 6 Wochen
Hauptreferent: Dipl.-Ing. Thomas Most



INHALTSVERZEICHNIS

1

Inhaltsverzeichnis
1 Einleitung 1
2 Mathematische Grundlage 1
3 Verschiebungsmethode 4
3.1 Einfihrung . . . . . .. 4
3.2 Element planedn . . . . .. ... 4
3.2.1 Lineare Formulierung . . . . . . . . . .. ... ... .. 4
3.2.2 Nichtlineare Formulierung . . . . . . . ... ... .. .. ... .. 6
4 Erweiterte Verschiebungsmethode 7
4.1 Einfihrung . . . . . .. L0 7
4.2 Locking . . . . . . 7
4.3 Erweiterter Verzerrungsansatz . . . . . . . .. ... oo 8
4.4 Element planedndeas . . . . . . . ..o 9
4.4.1 Lineare Formulierung . . . . . . . .. .. .. ... 0L 9
4.4.2 Nichtlineare Formulierung . . . . . . . .. ... ... .. ... .. 12
5 Numerische Beispiele 18
5.1 Einfithrung . . . . . . . . . 18
5.2 Patch-Test . . . . . . . . 18
5.3 Kragbalken mit linearer Momentenbeanspruchung . . . . . . . .. .. .. 19
5.4 Kragbalken mit konstanter Momentenbeanspruchung . . . . . . .. . .. 21
5.5 Aktivierung der EAS-Parameter unter Plastizierung . . . . . . . . . . .. 22
6 Zusammenfassung und Ausblick 23
A CD-ROM 25
B Selbststiandigkeitserklarung 25



1 EINLEITUNG 1

1 Einleitung

Ein Hauptbestandteil der aktuellen Forderperiode des Teilprojektes A1l des Sonderfor-
schungsbereiches 524 | Werkstoffe und Konstruktionen fiir die Revitalisierung von Bau-
werken® ist die Simulation diskreter Rissfortschrittsprobleme unter Verwendung einer
netzfreien Diskretisierung (siehe [Most and Bucher, 2003a], [Most and Bucher, 2003b])
und nichtlinearer Materialien mit stochastisch verteilten Materialeigenschaften. Hierbei
werden netzfreie Bereiche mit finiten Elementen gekoppelt. Um die Fehler aus der Fini-
ten Elemente Fomulierung moglichst gering zu halten, sind verbesserte lockingfreie finite
Elemente fiir das FE-Programmsystem SI2g [Bucher, 2002] notwendig. Einen Uberblick
tiber die verschiedenen lockingfreien Formulierungen zeigt [Andelfinger, 1991].

Ziel dieser Arbeit ist die Implementierung eines lockingfreien 4-knotigen Scheibenele-
mentes mit EAS-Formulierung in das FE-Programmsystem SI&18 [Bucher, 2002], wobei
physikalisch nichtlineare, geometrisch lineare Berechnungen moglich sein sollen. Weiter-

hin wird diese Methode in der vorliegenden Arbeit erldutert und diskutiert.

2 Mathematische Grundlage

Um nachfolgende Transformationen in Abschnitt 4 nachvollziehbar darstellen zu koénnen,
ist eine Transformationsmatrix 1" notig, die fiir die Transformation der zusétzlichen Mo-
den im erweiterten Verschiebungsansatz verwendet wird. Mit Hilfe der Transformations-
matrix T konnen lokale natiirliche Dehnungen in lokale kartesische Dehnungen transfor-

miert werden. Im Folgenden wird diese Tranformation ausfiihrlich hergeleitet.

Aus der Jacobi-Matrix

J:

ox O
or a—';{ _ Jin Ji2 (1)
9z %y Jor s

werden die kovarianten Basisvektoren

J11 J21
g1 = und g = 2

gewonnen. Somit kann die kovariante Transformationsmatrix G; fiir die Koordinaten-

transformationen aufgestellt werden.

Gi]_: gi1-g9g1 gi1-g:2 (3)
g2-gi1 4gz2- gz
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Die kontravariante Transformationsmatrix G* ergibt sich aus der Inversen der kovarian-

ten Transformationsmatrix G;.

.. 1 . — . 11 12

= deth — g1 g2 g1 g1 921 922

Somit ergeben sich die kontravarianten Basisvektoren in tensorieller Schreibweise.

9" =9"g; (5)

Nach Anwendung der Gaufl’schen Summenkonvention mit i = 1,2 und j = 1, 2 fiir den
vorliegenden 2-dimensionalen Fall erhdlt man

g =9"g1+9%g: wd g=g"g1+9"9> (6)

und unter Zuhilfenahme von Gleichung (1) und Gleichung (4) sind

g' = 1 (J31 + J3,) Jii — (Jirdor + Ji2dos) Jou
Jide + I dsy — 2Ji1dvadordas | (J2 + J2) iz — (JinJar + Jiadaz) Jao
und (7)
g% = 1 (J3 + J5) Jor — (Jindor + Ji2d11) Ju
Tty + o dyy — 2JunTiadarJan | (J + J) Jo2 — (JinJar + Jiaas) Jro

Die Transformation der Dehnungen erfolgt in tensorieller Schreibweise.

n

- €i) (8)

€kl = €mn (gm : ek) (g

Nach Gleichung (8) kénnen die Dehnungen bezogen auf das natiirliche Koordinatensys-
tem (r,s) in Dehnungen bezogen auf das kartesische Koordinatensystem (x,y) transfor-
miert werden. Somit wird iiber k,I = z,y und m,n = r,s summiert. Die Indizierung
der kontravarianten Basisvektoren g” und g® entsprechen nach Gleichung (7) den Vek-
toren g' und g?. Die Vektoren e, und e, sind die Einheitsvektoren des kartesischen

Koordinatensystems. In diesem Fall sind
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Fiir die lokalen kartesischen Dehnungen erhdlt man nach Gleichung (8).

€zz = Epr (g 81) (g 61) €yy = Epp (9 '82) (g : 82)
+ €55 (9% - e1) (9% - eq) + €55 (9% - €2) (9° - e2)
+ €5 (9" - €1) (9% - eq) + €5 (9" - €2) (92 - e2)
+esr (g% €1)(g" - er) +eor (g% €2) (g" - e2)

€xy = Cpr (gl : 61) (gl : 62) €yz = Err (91 : 82) (gl : 61) (10)
+ €55 (9% - €1) (9° - €2) + €55 (9% - e2) (9% - eq)
+es(gh-en) (g% e2) +es (g -e2) (g% er)
+eor (g% €1)(g' - e2) +eor (g% €2) (g" - e1)

Folglich lisst sich die Inverse der gesuchten Transformationsmatrix T ableiten, welche

die lokalen natiirlichen Dehnungen in lokale kartesische Dehnungen transformiert.

61‘33 67’7’
€= €y | = T! €ss (11)
2 €y 2 €rg
mit
(91'61)2 (92'61)2 (91 81)(92'62)
_ 2 2
T = (g* - e2) (9% e (g - e2) (g% e1)
(91'61) (91 62) (92 61)(92'62) (91 61) (92 62)+(92 61) (91 62)
1 J3 Jh —Ji9J22
= J3 Jh —J11Jn

Ji1Jas — Jiador)?
(1122 12J21) —2Jo1Jae —2J11J12 Jiidos + Jiodo

(12)
Nach Invertierung der Matrix T' erhilt man
Jh It Ji1Jia
T = J3 JY Jo1J22 (13)

2<]11<]21 2<]12<]22 J11J22+<]12<]21

Dies ist die gesuchte Transformationsmatrix 7" fiir die Transformation von lokalen natiirli-

chen in lokalen kartesichen Dehnungen bzw. Spannungen nach Gleichung (11).
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3 Verschiebungsmethode

3.1 Einfiihrung

In diesem Abschnitt wird das 4-knotige, isoparametrische Scheibenelement plane4n vor-
gestellt. Es gehort der Familie der lagrange Elemente an. Die Formulierung ist fiir geome-
trisch lineare, physikalisch nichtlineare Berechnungen ausgelegt. Aufgrund der geringen
Anzahl von Knoten und Knotenfreiheitsgraden ist es sehr iibersichtlich und somit einfach
in das FE-Programmsystem SI&8 [Bucher, 2002] zu implementieren. Wie jedes isopara-
metrische Element soll es den Patch-Test bestehen.

Der Nachteil des Elementes liegt in der fehlerhaften Versteifung. Dies tritt besonders bei
schubbeanspruchten Elementen auf, welches die Beispiele im Abschnitt 5 verdeutlichen.
Auf den genauen Hintergrund des sogenannten Locking-Effektes wird im Anschnitt 4.2
néher eingegangen.

Im Folgenden wird die lineare Formulierung des finiten Elementes plane4n beschrieben,

anschliefend kurz die Erweiterung auf die physikalisch nichtlineare Formulierung.

3.2 Element plane4n
3.2.1 Lineare Formulierung

Das finite Element plane4n, dargestellt in natiirlichen Koordinaten, ist in Abbildung 1 zu
sehen. Diese zeigt die Anordnung der Knoten in natiirlichen Koordinaten und die Lage

der Integrationspunkte (GauBpunkte).

Knoten 1 (1/1)

Intpktl.
e

Knoten 2 (~1/1) (05577..10577..)

Int.pkt2
(-0577..10,577..)

Int.pkt4 .
O

Intpkt3 ..-(0,577../-0,577...)
~-(0,577../<0,577...)

Uy
Knoten 4 (1/-1)

X, U
Knoten 3 (-1/-1)

Abbildung 1: Knoten und Integrationspunktanordnung im natiirlichen Koordinatensys-

tem (r,s)
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Das 4-knotige Scheibenelement hat bilineare Form- und Ansatzfunktionen.

hi=114r)14s) ; ho=3(1—-71)(1+5s) (14)
hy=311-r)(1—5) ; ha=114r)(1—5)
Die partiellen Ableitungen der Formfunktionen ergeben sich zu
% = }1(1#—5) : % = %(1%—7")
o= li-s) B o= -la-n)
o= qill=s) 5 5 = —i(1+r)

Mit Hilfe der Gleichung (15) kann die B,-Matrix in lokalen natiirlichen Koordinaten

erstellt werden.

20
B_a(;a hi 0 hy 0 hg 0 hy O
= 9
5 0 hi 0 hy 0 hg 0 Iy
L 85 or
(16)
[ o Ohy Ohs Oha
or 0 or 0 or 0 or 0
— Ohy Oho Oha Ohy
o 0 Js 0 Js 0 0s 0 Js
L Os or Js or Js or Os or

Unter Zuhilfenahme der Jacobi-Matrix J nach Gleichung (1) kénnen die partiellen Ab-

leitungen aus Gleichung (16) transformiert werden.

& =J! 81 mit i =1,2,3,4 (17)
oy Os

Die B-Matrix im kartesischen Koordinatensystem ist demnach

Ohy Ohao Ohs Ohyg
oz 0 ox 0 oz 0 oz 0
— o Oha Ohs Oha
B=| 0 % o % o 2 o O | (18)
Oh1  Oh1  Oha Oha Ohs Ohs Ohsa Ohy
oy oxr oy ox oy ox oy o

Die Materialmatrix C' fiir ebene, lineare Verzerrungszustinde und isotropes Materialver-
halten ergibt sich mit dem E-Modul E und der Querdehnzahl v zu

1 v 0
FE
C = v 1 0 19

2
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Mit Hilfe von Gleichung (18) und Gleichung (19) kann nun die Steifigkeitmatrix erstellt

werden.

K:/BTCBdV, K c R¥®
v (20)

Somit kann der Verschiebungsvektor d mit Hilfe der Gleichung (20) und dem Knoten-

lastvektor f berechnet werden.

T
d:[ul vi Uy vy uz vz ug vy | =K 'f, f eR® (21)

Die Dehnungen € ergeben sich aus der Multiplikation der Gleichung (18) und der Glei-
chung (21) an der gewéhlten Stelle im Element. Da die Integrationspunkte fiir die nu-
merische Integration verwendet werden, werden auch vorzugsweise die Dehnungen an

diesen Stellen ausgewertet.

~Bd (22)

2 €y

Die Komponeten des Spannungstensors ergeben sich aus Gleichung (19) und Gleichung
(22).

=Ce (23)

3.2.2 Nichtlineare Formulierung

Die Erweiterung der vorhergehenden linearen Vorgehensweise auf physikalisch nichtli-
neare Probleme ist unkompliziert. Hierzu wird ein zusétzlicher Riickstellkraftvektor r

benétig.

r:/BTadV, r € RS (24)
\%

Da die Materialmatrix C' im nichtlinearen Bereich von den Verzerrungen abhéngt, ist eine
Iteration notig. Der Riickstellkraftvektor = dient als Abbruchkriterium dieser Iteration,

zum Beispiel beim Newton-Raphson-Verfahren.
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4 Erweiterte Verschiebungsmethode

4.1 Einfiihrung

Das in diesem Abschnitt dargestellte finite Element plane4n4eas ist ein 4-knotiges Schei-
benelement mit EAS-Formulierung nach [Simo and Rifai, 1990]. Die Enhanced Assumed
Strain Methode beruht auf einem erweiterten Verzerrungsansatz, welcher in diesem Fall
durch vier zusétzliche Moden definiert wird. Dieses erweiterte Element soll die Verstei-
fungseffekte des plane4n im Schubbereich kompensieren.

Im Folgenden wird zunéchst der Locking-Effekt kurz beschrieben, der den Grund fiir die
Entwicklung der EAS-Methode darstellt. Danach wird der erweiterte Verzerrungsansatz
nach dem Prinzip von Hu-Washizu allgemein erldutert, bevor das finite Element pla-
nedndeas mit linearen und physikalisch nichtlinearen Ansétzen vorgestellt wird.

Dieses finite Element wurde in das FE-Programmsystem SIM8 [Bucher, 2002] implemen-

tiert.

4.2 Locking

Der Begriff Locking wird schon seit den sechziger Jahren fiir jede Art von Versteifungs-
problemen bei finiten Elementformulierungen benutzt. [Bischoff, 2001] versucht diesen

komplexen Begriff wie folgt zu bescheiben.

Locking ist der Effekt einer verschlechterten Konvergenzrate in Abhdngigkeit
eines kritischen Parameters. Die Grenze des Parameters ist infinitiv, die

der Konvergenzrate kann gegen Null streben.

Prinzipiell konnen diese Probleme nach [Bischoff, 2001] mechanische, mathematische oder
numerische Ursachen haben. Die einzelnen Versteifungsarten werden in ,,transverse shear
locking®, | volumetric locking®, , membran locking” und ,shear locking® unterschieden.
Bei Scheibenelementen sind prinzipiell ,,shear locking® und ,, volumetric locking® moglich.
Das Letztere tritt nur bei elastisch inkompressiblen und geometrisch nichtlinearem Ma-
terialverhalten auf. Weiterhin kann man diese Art von Locking bei plastisch inkompres-
siblem Materialverhalten beobachten, bei dem die plastische Fliebedingung nach von
Mises gewéhlt wurde. Da fiir die hier betrachteten Scheibenelemente nur kompressibles
Materialverhalten vorausgesetzt wird, tritt bei dem 4-knotigen isoparametrischen Schei-
benelement plane4n nur das ,shear locking“ auf. Diese Schubversteifungen konnen mit
Hilfe der EAS-Methode kompensiert werden.
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4.3 Erweiterter Verzerrungsansatz

In Anlehnung an [Andelfinger, 1991] geht der erweiterte Verzerrungsansatz auf das Prin-
zip von Hu-Washizu zuriick. Demnach ergibt sich die innere Energie eines Elementes

zu

1
U:/ieTCe—aTe—i-aTBisoddV. (25)
14

Die isoparametrische B;s,-Matrix entspricht Gleichung (18) und € = Bjs,d der Glei-
chung (22). Das Verzerrungsfeld wird im néchsten Schritt durch ein erweitertes Verzer-

rungsfeld ergénzt.

€ = B'Lsod + €en (26)

Gleichung (26) eingesetzt in Gleichung (25) ergibt

1
U= / 5 <Biso d+ eeh)T C (Biso d+ Eeh) —a’ €cndV. (27)
|4

Die Spannungen o und die erweiterten Verzerrungsfelder €.; werden so aufeinander ab-

gestimmt, das sie orthogonal aufeinander stehen.

/ ol €ndV =0 (28)
\4

Es bleiben somit nur noch die Verschiebungen d und die erweiterten Verzerrungen €.p,
als zu bestimmende Groflen in Gleichung (27) iibrig. Die Spannungen kénnen mindestens
konstante Anteile enthalten. Somit kann die Bedingung nach Gleichung (28) vereinfacht

werden.

/ €en dV =0 (29)
\%

Die einzige Bedingung fiir die Wahl des erweiterten Verschiebungsfeldes stellt somit Glei-
chung (29) dar. Die zusétzlichen Dehnungen integriert iiber das Element sollen sich auf-
heben. Diese Bedingung wird im Folgenden verwendet, um den erweiterten Ansatz zu

wéhlen bzw. zu iiberpriifen.



4 ERWEITERTE VERSCHIEBUNGSMETHODE 9

4.4 Element plane4n4eas
4.4.1 Lineare Formulierung

Es werden zunéchst die Ansatzfunktionen des isoparametrischen plane4n Elementes iiber-

nommen und um 2 Ansatzfunktionen erweitert.

hi=304r)(14+s) ; ho=31-7r)(1+5)
hs=11—-7r)(1-5) ; ha=311+r)(1-5s) (30)
gbl:%rQ ; ¢2—%32

Die Ableitungen ergeben sich zu
o= il4s) ;B o= 1141
B o= M4 5 B o= d1-7)
ko= M- 5 ko= —H1-) )
o= ill-s) 5 5 = —il+r)
% = T % = 0
% = 0 ; % S

Die komplette B-Matrix nach der EAS-Methode in kartesischen Koordinaten setzt sich
nun zusammen aus der isoparametrischen B;g,-Matrix nach Gleichung (18) und einer
B.p-Matrix, die infolge der zusétzlichen Moden entsteht.

B = [Biso|Ben) , B eR>12 B, € R¥® B, € R¥ (32)

Die isoparametrische B;z,-Matrix wird nach dem gleichen Prinzip erzeugt wie in Ab-
schnitt 3.2.1 gezeigt. Nachfolgend wird die Berechnung der Bgp-Matrix beschrieben.
Die folgende auf das natiirliche Koordinatensystem bezogende By, -Matix wird nach
dem gleichen Verfahren erzeugt, wie die isoparametrische Bigo -Matrix nach Gleichung
(16).

a0 2 0 r 000
Benr=|0 & 0 2| =100 0 s (33)
oL f1 g2 g2 0r s 0

ds Or 9s Or

Um der Bedingung nach Gleichung (29) zu gentigen, muss die Bep, -Matix mit Hilfe der
Transformationsmatrix T' nach Gleichung (13) in kartesische Koordinaten transformiert
werden. Da die numerische Integration {iber die Gaufpunktintegration durchgefiihrt wird,

muss dies fiir alle Integrationspunkte i vorgenommen werden. Die Matrizen Jy und Ty
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sind dabei die Jacobi-Matrix J und die Transformationsmatrix 71" ausgewertet im Ele-

mentmittelpunkt (r = s = 0).

deth

Bep, = To " Ben,r 34
h detJi 0 h, ( )

I . . . detJo
Die Wichtung der Integrationspunkte wird dabei iiber den Faktor Tot vorgenomimen.

etd;

detJ,
/ / detJO Beh,r avdetJ;drds =0 (35)
e

Der Vektor a stellt dabei die zusétzlichen Freiheitsgrade der zusétzlichen Moden dar und
wird noch néher erldutert. Da detJo, Tp~* und a nur konstante Terme innerhalb eines

Elementes enthalten, vereinfacht sich Gleichung (35) zu

1 1
/ / Bep,rdrds =0 (36)
1/

Diese von Gleichung (29) abgeleitete weiterhin vereinfachte Bedingung ist fiir die gewéhl-
ten zusétzlichen Moden einzuhalten. Die Wahl der zusétzlichen Moden ist demnach nicht
direkt an eine physikalische Bedingung gebunden.

Setzt man nun diese neue B-Matrix nach Gleichung (32) in die Gleichung (20) ein, so

erhalt man

Kiso—l-eh :/ [B'iso‘Beh]T C [Biso‘Beh] av ) Kiso-l-eh S R12X12
\%4

(37)
_ Kll K12
K21 K22
mit
K — / Biw? C BiodV , Ky € RS
1%
K — / Bin’ C BopdV , Ky € RS
1%
(38)

Ky = / BehT C Biso dV = K12T , Ko € RY8
1%

K22:/BehTCBeth , Kay € RV,
|4



4 ERWEITERTE VERSCHIEBUNGSMETHODE 11

Analog zur Gleichung (21) ergibt sich folgende Gleichung.

K K
u K| d) 1 f , deRS, acR feRS 0cR (39)
Ky Ko « 0

Da den a-Werten keine physikalische Bedeutung oder resultierenden Krifte zugeordnet
werden konnen, wird die entsprechende rechte Seite dem 0-Vektor gleichgesetzt. Die a-

Werte ergeben sich aus der letzten Zeile der Gleichung (39)
K21d+K22a =0 (40)

zZu
o = —K22_1K12Td. (41)

Nach [Freischlager, 2000] ist die Invertierung der Matrix Kay fiir eine positiv definite
Werkstoffmatrix C' und kleine Verzerrungen stets moglich. Probleme konnte es jedoch
im geometrisch und/oder physikalisch nichtlinearem Bereich geben. Die kondensierte Ele-
mentsteifigkeitsmatrix K nach der EAS-Methode ergibt sich aus Gleichung (41) einge-
setzt in die 1. Zeile der Gleichung (39).

K11 d+ Klz(_K22_1K12T d) = f

(42)
(K11 — K12 Kao 'Ky )d = f
Dementsprechend ist die kondensierte Elementsteifigkeitsmatrix
K=K — K3 Ks K7, K € RS*S, (43)

Der Verschiebungsvektor d wird nach Gleichung (21) berechnet werden. Die Gesamtdeh-

nungen fiir das plane4n4eas ergeben sich zu

61:17

= Biso d + Beh . (44)

€ — €Eyy

2 €qy

Analog dem isoparametrischen Element berechnen sich die Spannungen mit Hilfe der
Dehnungen € (Gleichung (44)) und der Materialmatrix C' (Gleichung (19)) nach Glei-
chung (23).
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4.4.2 Nichtlineare Formulierung

Um von der linearen Formulierung zur Nichtlinearen zu gelangen, ist wie beim isopara-
metrischen Element neben dem geeigneten Materialgesetz auch der Riickstellkraftvektor

r notig. Dieser berechnet sich nach [Freischliger, 2000]

T = Tiso — K12K22_1"°eh , T € R® (45)

mit

Teh = / BehT odV , Ten € ]R4 (46)
\%

und dem isoparametrischen Riickstellkraftvektor r;s, nach Gleichung (24). Dabei ist
zu bemerken, das der Riickstellkraftvektor rq; der zusétzlichen Moden fiir korrekte a-
Werte stets dem 0-Vektor entspricht. Dies folgt mit €., = Bep a und a0 = const indirekt
aus Gleichung (28). Da sich die EAS-Parameter, z.B. wihrend einer Newton-Raphson-
Iteration, infolge der veranderten Material- und Steifigkeitsmatrizen &ndern, miissen diese
ebenso wie die Verschiebungen d iteriert werden.

Im Folgenden werden nun vier verschiedene Moglichkeiten zur Berechnung der EAS-Para-
meter zur Verwendung in einer Newton-Raphson-Iteration vorgestellt. Die einzelnen Ver-
fahren werden unter anderem durch Flussdiagramme in iibersichtlicher Form dargestellt
und sind nur fiir physikalisch nichtlineare Berechnungen giiltig. In [Freischldger, 2000] ist

die Erweiterung auf eine geometrisch nichtlineare Formulierung nachzulesen.
Variante 1 - Globale Iteration der EAS-Parameter

Diese Variante war ein erster Versuch, die korrekten EAS-Parameter zu erhalten. Der
Quellcode soll hierbei keine speziellen Algorithmen zur Iteration der EAS-Parameter vor-
sehen. Vielmehr soll die globale volle Newton-Raphson-Iteration automatisch die richtige
Losung bestimmen. Diese Idee wurde jedoch nicht getestet und aus folgenden Griinden
verworfen.

Da nicht zwischen plastizierenden und elastischen Elementen unterschieden werden kann,
wird der zusétzliche Rechenaufwand fiir die Bestimmung der EAS-Parameter sehr grofi.
Dieser spiegelt sich in der Bestimmung der globalen Steifigkeitsmatrix und im Lésen des
globalen Gleichungssystems wieder.

Weiterhin ist es moglich, dass im Verlauf der Laststeigerung ein Zustand erreicht wird,
der vor der Iteration der EAS-Parameter plastisch ist und durch die Abminderung der
Steifigkeit wieder in den elastischen Bereich zuriickschwenkt.

Somit birgt dieses Verfahren nicht nur einen hohen Rechenaufwand, sondern auch eine

erhohte Gefahr von Instabilitdaten in sich. Es ist deshalb unbrauchbar.
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Variante 2 - Lokale Iteration der EAS-Paramenter

Hierbei handelt es sich um eine Interation auf lokaler Elementebene. Die Iteration wird
demzufolge nur auf plastizierende Elemente angewendet. Deshalb ist diese Variante ge-

rade bei wenig plastizierenden Elementen innerhalb eines Systems effektiver als Variante
1.

Neues Verschiebungsinkrement Ad®

4

Berechne neue Gesamtverschiebungen
dt) — g + Ad®
4

Berechne durch Iteration a(th:

Y

Startwert a; = a?
v=20
DOv=v+1
Aayyg = —K2271(av)K12T(04v)d(i+1)
WHILE ||a, 41 — aw|| >TOL

4

Berechne e+

und damit Spannungen o (t) und Materialmatrix C'

4

Berechne mittels statischer Kondensation eine neue

i+1)

effektive Elementsteifigkeitsmatrix
KD — g, 0+ _ 6D |:K22(i+1):|_1 Ky,
und einen neuen effektiven Riickstellkraftvektor

’I"(H_l) _ riso(i+1) B Klz(i—H) |:K22(i+1)i| -1 Teh(z‘-‘rl)

Abbildung 2: Variante 2; Lokale Iteration der EAS-Parameter

Da die EAS-Parameter im nichtlinearen Bereich von der verdnderten Materialmatrix C

abhéngen, miissen diese iteriert werden. Das Abbruchkriterium stellt hier die Differenz
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zwischen den a-Werten des aktuellen und des vorhergenden Iterationsschrittes dar. Diese
sollen gegen 0 streben bzw. unterhalb einer Toleranzgrenze TOL liegen.

Obwohl nur die EAS-Parameter der plastizierenden Elemente berechnet werden ist die-
ses Verfahren aufwendig, da fiir jeden inneren Iterationsschritt die komplette Element-
steifigkeitsmatrix K berechnet werden muss. Die gewéhlten Startwerte fiir die EAS-
Parameter werden aus dem vorhergehende Iterationsschritt iibernommen. Fiir starke
Nichtlinearitaten und/oder groBe Intervallschritte sind diese nicht dicht genug an der
richten Losung. Deshalb ist es moglich, dass sich keine Konvergenz einstellt und somit

falsche Losungen entstehen.
Variante 3 - Lokale explizite Berechnung der EAS-Parameter

Hierbei handelt es sich um ein klassisches Verfahren zur Bestimmung der Elementsteifig-
keitsmatrix nach [Freischliger, 2000]. Die Anderung der EAS-Parameter Aa® im Schitt

1 wird durch Losung eines linearen Gleichungssystemes gewonnen.

Klz(Z)TAd(Z) —+ Kzz(l)Aa(z) = ’I"eh(i) (47)

Diese Gleichung erhilt man analog zur letzten Zeile der Gleichung (39), mit dem Un-
terschied, dass hier die Inkremente und nicht die Verschiebungen und a-Werte genutzt

werden. Somit ergibt sich fir Aa® im i-ten Schritt.

Ao’ = Kzz(i)_lTeh - Kzz(i)_lKlz(i)TAd(i) (48)

Fiir lineare Berechnungen ist dieses Vorgehen exakt. Im nichtlinearen Bereich stellt Glei-
chung (48) nur eine Ndherung dar. Somit entspricht der Riickstellkraftvektor rp nicht
ausreichend genau dem 0-Vektor und muss deshalb mit beriicksichtigt werden. Anschlie-

Bend werden die EAS-Parameter des folgenden Schrittes wie folgt bestimmt.

o = a4 A (49)

Der Nachteil dieser Methode ist der numerische Aufwand zur Bestimmung der Matri-
zen ng(i)fl und K 12(i)T aus dem vorhergehenden i-ten Schritt. Alternativ konnen die-
se auch gespeichert werden, was den Aufwand nicht mindert. Da es sich nur um eine
Néherungslosung handelt, miissen die Lastschritte ausreichend klein gewéahlt werden, um
konvergierende Losungen zu erhalten. Die eigentliche Iteration wird global z.B. iiber eine
Newton-Raphson-Iteration durchgefiihrt. Somit ist der Gesamtaufwand zur Berechnung
der globalen Steifigkeitsmatrix und zum Losen des Gleichungssystems fiir jeden Last-

schritt sehr grof.
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Neues Verschiebungsinkrement Ad®
4

Berechne neue Gesamtverschiebungen
ditD) = d® 4 Ag®
\
Berechne mit d¥ und a®:
K12(i)7 K2 und rep®
4

Berechne Aa® als Losung des linearen Gleichungssystemes:
Ko WA = 10 — K15, Ad®

4

Berechne o+t = @ + Aa®

Y

Berechne e(+1)

und damit Spannungen o(t) und Materialmatrix C'

4

Berechne mittels statischer Kondensation eine neue

i+1)

effektive Elementsteifigkeitsmatrix:
KD — g, 0+ _ 6D |:K22(i+1):|_1 Ky, 0t)"
und einen neuen effektiven Riickstellkraftvektor

, ‘ - IS
POt — g (1) R (D) |:K22(z+ )} 7oy ()

-~

£0

Abbildung 3: Variante 3; Lokale explizite Bestimmung der EAS-Parameter

Variante 4 - Lokale implizite Iteration der EAS-Parameter

vergieren.

15

Dieses Verfahren, von [Freischlager, 2000] vorgeschlagen, iteriert die EAS-Parameter lo-
kal. Als Abbruchkriterium wird der Riickstellkraftvektor, allein berechnet aus den zusétz-

lichen Verschiebungsfeldern, verwendet. Dieser muss wiederum gegen den 0-Vektor kon-

Die Qualitédt des 0-Vektors wird mit der euklidischen Norm iiberpriift, die gegen 0 kon-
vergieren bzw. unterhalb einer gewéhlten Toleranzgrenze TOL liegen soll. Diese Toleranz-

grenze statisch festzulegen ist nicht ratsam, da die Anzahl der numerisch auswertbaren
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Nachkommastellen von der Matrix Kso abhidngt und damit in erster Linie vom Verfes-
tigungsmodul, welches einen charakteristischen Parameter fiir jedes Element darstellt.

Weiterhin ist eine Schranke fiir die Anzahl der Iterationsschritte zu empfehlen.

Neues Verschiebungsinkrement Ad®

4

Berechne neue Gesamtverschiebungen
dt) — g + Ad®
U
Berechne durch Iteration ") aus der Gleichung
Ter(d) o)) = 0 fiir festes dT:

Startwert a; = a?
v=20
DOv=v+1
A, = —Kay ' (a)Ten(ay)
a1 = a, + Aay
WHILE ||7en(cyy1)|| >TOL

) = q

4

Berechne e(i+1)

und damit Spannungen o(t) und Materialmatrix C'

4

Berechne mittels statischer Kondensation eine neue

i+1)

effektive Elementsteifigkeitsmatrix
KO+ — f 0D g 4D [Kzz(i+1):|1 Ky, (H)"
und einen neuen effektiven Riickstellkraftvektor

. , - ]! ,
POt — g (1) _ fe (D) [Kzz(wr )} Gy

(. J/

~~

~0

Abbildung 4: Variante 4; Lokale implizite Iteration der EAS-Parameter
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Dieses Verfahren ist je nach Anzahl der Iterationsschritte v aufgrund der mehrmaligen
Berechnung der Koo' Matrix und des 7., Vektors mehr oder weniger aufwendiger als
das Verfahren nach Variante 3.

Dennoch wurde dieses Verfahren zur Berechnung der EAS-Parameter in das FE-Pro-
grammsystem S[A& [Bucher, 2002] implemetiert. Es hat sich als sehr stabil erwiesen
und bestimmt die EAS-Parameter exakt, d.h. der Riickstellkraftvektor r.; entspricht

innerhalb der Toleranzgrenze dem 0-Vektor.
Anmerkungen zur Implementation

Die Bestimmung der EAS-Parameter muss im FE-Programmsystem SIA8 [Bucher, 2002]
in mehreren Routinen gewihrleistet werden, da die Reihenfolge der Berechnung der
Steifigkeitsmatrix, Riickstellkriafte und Spannungen bzw. Dehnungen nicht an eine be-
stimmte Struktur gebunden ist, sondern vom Nutzer selbst bestimmt werden kann.
Um dies beibehalten zu koénnen, wird die Routine zur Iteration der EAS-Parameter
elem_plane4ndeas_alpha.c in der Steifigkeitsroutine elem_plane4ndeas_ stiff.c, in der Riick-
stellkraftroutine elem_plane4n4eas_resforce.c und in der Spannungsberechnungsroutine
stress_build.c aufgerufen. Dabei werden zu Beginn der Iteration als Startwerte die c-Werte
aus dem Speicher genutzt und nach der Iteration die neuen a-Werte abgespeichert. Dem-
zufolge wird die eigentliche Iteration, z.B. bei Berechnung des Riickstellkraftvektors un-
mittelbar nach der Berechnung der Steifigkeitsmatrix, nicht aktiviert. Lediglich eine Kon-
trolle der a-Werte wird vorgenommen. Auf diese Weise konnte der numerische Aufwand

gering gehalten werden.
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5 Numerische Beispiele

5.1 Einfiihrung

Zur Uberpriifung der Vollsténdigkeit der Elementansitze, des Konvergenzverhaltens, so-
wie dem Verhalten bei unterschiedlicher Netzverzerrung werden nun vier Testbeispiele
zum Vergleich der plane4n und planed4ndeas Elemente durchgefiihrt.

Die angefiihrten Tests und Materialparameter werden teilweise den numerischen Beispie-

len von [Andelfinger, 1991] nachempfunden.

5.2 Patch-Test

Der Patch-Test, auch Fleckentest genannt, soll die Fahigkeit des Elementes iiberpriifen,
bei beliebig verzerrter Geometrie einen Zustand konstanter Spannungen und Verzer-
rungen darstellen zu koénnen. Dieser Test gilt als bestanden, wenn alle Elementspan-
nungen fiir jeden beliebigen Integrationspunkt (Flecken) und alle Elementverzerrungen
fiir jeden Knoten mit der analytischen Losung iibereinstimmen. Dies muss sowohl fiir

lineare als auch fiir nichtlineare Berechnungen giiltig sein.

0/10 1010
E = 1000
v=0.3
a7 8/7
3/4
8/3 y
0/0 10/0 >
A A
74
C C I C
a; o, a,

Abbildung 5: Elementkonfiguration und Lastfélle des Patch-Testes

Wenn der Patch-Test erfiillt ist, ist nach [Bathe, 1996] die Konvergenz, auch wenn diese

nicht notwendig monoton sein braucht und sehr langsam eintreten kann, sichergestellt.
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Ebenfalls stellt der Patch-Test eine Art Vollsténdigkeitsbedingung fiir eine Elementgrup-
pierung dar. Nach [Andelfinger, 1991] konnen, bei entsprechender Elementkonfiguration,
nicht alle zero energy modes eines Elementes aufgedeckt werden. Somit ist eine zusétz-
liche Eigenwertanalyse oder ein Ein-Element-Test mit allgemeiner Belastung fiir eine
vollstéandige Elementiiberpriifung notwendig.

Bei den hier vorliegenden 4-knotigen Scheibenelemten sind genau drei konstante Span-
nungszustidnde moglich. In Abbildung 5 ist die gewéhlte Elementkonfiguration, die na-
hezu alle Varianten vom symmetrischen Trapez bis zum vollstédndig verzerrten Element
enthéilt, zu sehen. Weiterhin zeigt Abbildung 5 die gewéahlten Lagerungsbedingungen und
Belastungen fiir jeden erzeugten konstanten Spannungszustand.

Abbildung 6 zeigt die Resultate des Patchtestes beim Ubergang vom linearen zum nicht-
linearen Materialverhalten fiir die Spannungskomponente o,,. Hierbei wurde die Flie-
grenze zu 2 gewahlt. Die Verfestigungsmoduli stehen im Verhéltnis von 1000 zu 100.
Die anderen Material- und Geometriewerte sind Abbildung 5 zu entnehmen. Auch hier
ist die Spannung in allen Integrationspunkten gleich. Alle Verschiebungen, Verzerrungen

und Spannungen sind vorhersehbar.

Force Stress
2.0E1 3.0E0
15 25 _
2.0 _
1.0 | 1.5
1.0
051 T
05 _
0.0 —ttttt—t—t—t——1 0.0 | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0E-1 0.0 05 1.0E-1

Displacement Strain

Abbildung 6: Kraft-Verschiebungs-Diagramm und Spannungs-Dehnungs-Diagramm fiir

den Patch-Test der Spannungkomponente o,

Die beiden hier vorgestellten 4-knotigen Scheibenelemente erfiillen den linearen und nicht-
linearen Patch-Test. Da die zusétzlichen Moden der EAS-Methode nicht aktiviert werden,

sind die resultierenden Spannungen und Verzerrungen fiir beide Elemente gleich.

5.3 Kragbalken mit linearer Momentenbeanspruchung

Mit dem Patch-Test wurde die Vollstandigkeit der Elemente kontrolliert. Nun soll der
Einfluss der Elementverzerrung iiberpriift und die beiden Scheibenelemente verglichen
werden. Es wird hierzu in Anlehnung an [Andelfinger, 1991] ein Kragbalken bestehend
aus 4 Elementen mit unterschiedlicher Verzerrung nach Abbildung 7 gewihlt. Die Er-
gebnisse sind auf eine FE-Losung von 0.52175 normiert. Als zusétzlichen Vergleich wird

das EAS-4 Element von [Andelfinger, 1991] angefiihrt, welches die gleichen Ansétze wie
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das plane4n4eas Element hat. Auffallend ist der starke Versteifungseffekt des plane4n
Elementes, welches schon im unverzerrten Elementnetz vorliegt. Das plane4ndeas Ele-
ment hingegen zeigt ein sehr gutes Verhalten im unverzerrten und méfliges im verzerrten

Elementnetz. Je grofler der Verzerrungsgrad, desto grofler werden auch hier die Abwei-

chungen.
F
‘ E = 1000
v=00
(@) —
@ FQ F=10
h=1.0

4.0 4.0 4.0 4.0

- - - -

- - - -

:
'
'
:
'

20 4.0 4.0 6.0

B —

Abbildung 7: Kragarm mit unterschiedlich verzerrtem Elementnetz

planedn | planedndeas | EAS-4 | plane9n
A 0.68 1.00 1.00 1.02
B 0.60 0.98 0.98 1.02
C 0.35 0.93 0.87 1.02

Tabelle 1: Durchbiegung der Kragarmspitze (Oberkante); Solllosung = 1.00

Ungeklért ist der Unterschied in der Verzerrungskonfiguration C zwischen dem Element
planedndeas und dem Element EAS-4 von [Andelfinger, 1991] trotz identischer Ansitze.
Weiterhin wird zum Vergleich ein 9-knotiges isoparametrisches lagrange Scheibenelement
plane9n mit quadratischen Form- und Ansatzfunktionen angefiihrt. Ein Einfluss der Netz-
verzerrung bei diesem Element ist nicht zu erkennen, dennoch sind die Abweichungen zur

analytischen Losung (0.5120), zumindest bei unverzerrter Elementkonfiguration, grofier.
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5.4 Kragbalken mit konstanter Momentenbeanspruchung

Abbildung 8 zeigt ein weiteres Beispiel, um die Versteifungseffekte mit zunehmender
Netzverzerrung zu untersuchen. In diesem Fall wird ein konstantes Moment auf einen
Kragarm bestehend aus zwei Elementen aufgebracht.

Hier kénnen die gleichen Feststellungen getroffen werden wie im Beispiel mit linearer
Momentenbeanspruchung. Das plane4n Element weist schon im unverzerrtem Zustand
erhebliche Abweichungen zur analytisch exakten Losung auf, wobei das plane4ndeas Ele-
ment mit unverzerrtem Elementnetz exakte Ergebnisse liefert, und sich erst mit fort-
schreitender Verzerrung verschlechtert. In diesem Fall entspricht der Verlauf des Elemen-
tes plane4ndeas dem Verlauf des Elementes EAS-4 von [Andelfinger, 1991].

Auch hier zeigt sich beim Element plane9n kein Einfluss aus der Netzverzerrung, es kann
sogar auf Grund der quadratischen Form- und Ansatzfunktionen die Verschiebungen trotz

Verzerrung exakt darstellen.

a \ v
‘ <4 F E=3000
2 v=0.0
> F=1.0
5.0 5.0 F h=10

V/Vex
1.1E0

plane4n
plane4ndeas
plane9n

Abbildung 8: Einfluss der Netzverzerrung auf die Durchbiegung
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5.5 Aktivierung der EAS-Parameter unter Plastizierung

Mit dem nichtlinearen Patch-Test wurde bereits die Richtigkeit von nichtlinearen Be-
rechnungen iiberpriift. Dabei wurden jedoch nicht die EAS-Parameter aktiviert. Um die
Iteration der EAS-Parameter unter Plastizierung zu iiberpriifen, wird das folgende Bei-
spiel angefiihrt.

Hierzu wird die Geometrie und Lasteintragung aus dem vorhergehenden Beispiel nach
Abbildung 8 iibernommen. Das bilineare Materialgesetz hat die Verfestigungsmoduli 3000
und 600. Die Flieigrenze wird zu 3 definiert. Abbildung 9 zeigt die Last-Verschiebungs-

Kurven fiir verschiedene Verzerrungen, welche mit a charakterisiert werden.

Force
7.0E-1

6.0
5.0
4.0
3.0
2.0
1.0

0.0 , ) , , , , , ) , , ,
0.0 0.5 1.0 1.5 20 25 3.0 35 4.0 45 5.0 55E-1
\%

oo
[T
© o PNA
o o1 ocow

D o
i u

Abbildung 9: Einfluss der Netzverzerrung auf die Durchbiegung v unter Plastizierung

Die unverzerrte Elementkonstellation (a = 0.0) zeigt das erwartete Verhalten eines Krag-
tragers mit konstantem Moment im linearen und nichtlinearen Verlauf.

Wie jedoch das vorhergehende lineare Beispiel vermuten lasst, kann auch hier im nicht-
linearem Bereich der Versteifungseffekt mit zunehmender Verzerrung gezeigt werden.
Sowohl der 1. als auch der 2. Verfestigungsmodul, ablesbar aus Abbildung 9, ist hoher
als der Vorgegebene.

Auffallend ist der Bereich in der Nahe der Plastizierungsgrenze. Hier ist ein allméhli-
cher Anstiegswechsel, im Gegensatz zu den unverzerrten Elementen, festzustellen. Bei
der unverzerrten Elementkonfiguration sind die von Mises-Vergleichsspannungen in je-
dem Integrationspunkt der beiden Elemente gleich. Die von Mises-Vergleichsspannungen
der verzerrten Konfiguration sind jedoch unterschiedlich. Aus diesem Grunde plastizieren
nicht alle Integrationspunkte bei gleicher Belastung. Der ausgerundete Anstieg im Be-
reich der FlieBgrenze ist somit mit einem schrittweisen Plastizieren des Gesamtsystemes

zu erklaren.
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6 Zusammenfassung und Ausblick

Die vorliegende Studienarbeit konnte anhand eines 4-knotigen Scheibenelementes die
Vor- und Nachteile der EAS-Formulierung aufzeigen. Klare Vorteile sind bei unverzerr-
ten Elementkonfigurationen zu beobachten. Hier kann die EAS-Formulierung die ana-
lytische Losung exakt bzw. sehr genau abbilden. Gegeniiber dem 4-knotigen Verschie-
bungselement konnte die numerische Losung, aufgrund der , shear locking“-Elimination,
wesentlich verbessert werden. Der Vergleich mit 9-knotigen Verschiebungselementen zeigt
jedoch, zumindest in den angefiihrten Beispielen, die Schwachstellen bei verzerrten Ele-
mentkonfigurationen.

In nichtlinearen Berechnungen hangt die Effizienz der Berechnung stark von willkiirlich
festlegbaren Parametern ab. Hier besteht noch erheblicher Forschungsbedarf, um eine
hohere Effizienz, unabhéngig vom Nutzer, zu erzielen.

Um dieses Element im Rahmen des Sonderforschungsbereiches 524 vollwertig fiir die sto-
chastische Modellierung von Materialparametern in Zufallsfeldern [Brenner, 1995] nutzen
zu konnen, sind noch einige Erweiterungen notwendig. Dies ist Gegenstand der momen-

tanen Forschung.
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A CD-ROM

Die beigelegte CD-ROM enthélt einige wichtige Dateien, die es dem Leser oftmals er-
leichtern, den dargestellten Sachverhalt besser nachzuvollziehen. So findet man die an-
gefithrten Beispiele mit einer Linux-kompatiblen SI&E -Version, sowie die implementier-
ten Quellcode-Dateien.

Weiterhin beinhaltet diese CD eine PDF-Version des vorliegenden Schriftstiickes und

einen Teil der verwendeten Literatur.
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