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Zusammenfassung

Im Rahmen dieser Studienarbeit wird für ein 4-knotiges Scheibenelement die

”Enhanced Assumed Strain“-Formulierung angewendet, um die bei isoparametri-
schen Elementen bekannten Schubversteifungseffekte aufzuheben. Es werden diese
Lockingeffekte kurz erläutert. Ausgehend vom isoparametrischen 4-knotigen Schei-
benelement, wird der lineare Ansatz der EAS-Methode vorgestellt und dann auf
den physikalisch nichtlinearen Ansatz erweitert. Weiterhin werden Beispiele vor-
gestellt, die zum einen eine Kontrolle der Elementimplementierung gewährleisten
und zum anderen die Verbesserung des isoparametrischen 4-knotigen Scheibenele-
mentes durch die EAS-Formulierung zeigen.
Das 4-knotige Scheibenelemente mit EAS-Formulierung wurde in das FE-Programm-
system SLang implementiert.



AUFGABENSTELLUNG i

04.11.2002

Bauhaus-Universität Weimar
Institut für Strukturmechanik

Aufgabenstellung für die Studienarbeit von Herrn Maik Brehm

Implementation eines 4-knotigen EAS-Scheibenelementes für
physikalisch nichtlineare Berechnungen

Im Rahmen der Studienarbeit soll für ein 4-knotiges Scheibenelement die
”
Enhanced

Assumed Strain“-Formulierung angewendet werden, um die bei isoparametrischen Ele-

menten bekannten Schubversteifungseffekte aufzuheben. Dabei ist die Methode zunächst
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1 EINLEITUNG 1

1 Einleitung

Ein Hauptbestandteil der aktuellen Förderperiode des Teilprojektes A1 des Sonderfor-

schungsbereiches 524
”
Werkstoffe und Konstruktionen für die Revitalisierung von Bau-

werken“ ist die Simulation diskreter Rissfortschrittsprobleme unter Verwendung einer

netzfreien Diskretisierung (siehe [Most and Bucher, 2003a], [Most and Bucher, 2003b])

und nichtlinearer Materialien mit stochastisch verteilten Materialeigenschaften. Hierbei

werden netzfreie Bereiche mit finiten Elementen gekoppelt. Um die Fehler aus der Fini-

ten Elemente Fomulierung möglichst gering zu halten, sind verbesserte lockingfreie finite

Elemente für das FE-Programmsystem SLang [Bucher, 2002] notwendig. Einen Überblick

über die verschiedenen lockingfreien Formulierungen zeigt [Andelfinger, 1991].

Ziel dieser Arbeit ist die Implementierung eines lockingfreien 4-knotigen Scheibenele-

mentes mit EAS-Formulierung in das FE-Programmsystem SLang [Bucher, 2002], wobei

physikalisch nichtlineare, geometrisch lineare Berechnungen möglich sein sollen. Weiter-

hin wird diese Methode in der vorliegenden Arbeit erläutert und diskutiert.

2 Mathematische Grundlage

Um nachfolgende Transformationen in Abschnitt 4 nachvollziehbar darstellen zu können,

ist eine Transformationsmatrix T nötig, die für die Transformation der zusätzlichen Mo-

den im erweiterten Verschiebungsansatz verwendet wird. Mit Hilfe der Transformations-

matrix T können lokale natürliche Dehnungen in lokale kartesische Dehnungen transfor-

miert werden. Im Folgenden wird diese Tranformation ausführlich hergeleitet.

Aus der Jacobi-Matrix

J =

[
∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

]
=

[
J11 J12

J21 J22

]
(1)

werden die kovarianten Basisvektoren

g1 =

[
J11

J12

]
und g2 =

[
J21

J22

]
(2)

gewonnen. Somit kann die kovariante Transformationsmatrix Gij für die Koordinaten-

transformationen aufgestellt werden.

Gij =

[
g1 · g1 g1 · g2

g2 · g1 g2 · g2

]
(3)
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Die kontravariante Transformationsmatrix Gij ergibt sich aus der Inversen der kovarian-

ten Transformationsmatrix Gij .

Gij = Gij
−1 =

1

detGij

[
g2 · g2 − g2 · g1

− g1 · g2 g1 · g1

]
=

[
g11 g12

g21 g22

]
(4)

Somit ergeben sich die kontravarianten Basisvektoren in tensorieller Schreibweise.

gi = gij gj (5)

Nach Anwendung der Gauß’schen Summenkonvention mit i = 1, 2 und j = 1, 2 für den

vorliegenden 2-dimensionalen Fall erhält man

g1 = g11 g1 + g12 g2 und g2 = g21 g1 + g22 g2 (6)

und unter Zuhilfenahme von Gleichung (1) und Gleichung (4) sind

g1 =
1

J2
11J

2
22 + J2

12J
2
21 − 2J11J12J21J22

[
(J2

21 + J2
22) J11 − (J11J21 + J12J22) J21

(J2
21 + J2

22) J12 − (J11J21 + J12J22) J22

]

und

g2 =
1

J2
11J

2
22 + J2

12J
2
21 − 2J11J12J21J22

[
(J2

11 + J2
12) J21 − (J11J21 + J12J11) J11

(J2
11 + J2

12) J22 − (J11J21 + J12J22) J12

]
.

(7)

Die Transformation der Dehnungen erfolgt in tensorieller Schreibweise.

εkl = εmn (gm · ek) (gn · el) (8)

Nach Gleichung (8) können die Dehnungen bezogen auf das natürliche Koordinatensys-

tem (r,s) in Dehnungen bezogen auf das kartesische Koordinatensystem (x,y) transfor-

miert werden. Somit wird über k, l = x, y und m,n = r, s summiert. Die Indizierung

der kontravarianten Basisvektoren gr und gs entsprechen nach Gleichung (7) den Vek-

toren g1 und g2. Die Vektoren ex und ey sind die Einheitsvektoren des kartesischen

Koordinatensystems. In diesem Fall sind

ex = e1 =

[
1

0

]
und ey = e2 =

[
0

1

]
. (9)
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Für die lokalen kartesischen Dehnungen erhält man nach Gleichung (8).

εxx = εrr (g1 · e1) (g1 · e1) εyy = εrr (g1 · e2) (g1 · e2)

+ εss (g2 · e1) (g2 · e1) + εss (g2 · e2) (g2 · e2)

+ εrs (g1 · e1) (g2 · e1) + εrs (g1 · e2) (g2 · e2)

+ εsr (g2 · e1) (g1 · e1) + εsr (g2 · e2) (g1 · e2)

εxy = εrr (g1 · e1) (g1 · e2) εyx = εrr (g1 · e2) (g1 · e1)

+ εss (g2 · e1) (g2 · e2) + εss (g2 · e2) (g2 · e1)

+ εrs (g1 · e1) (g2 · e2) + εrs (g1 · e2) (g2 · e1)

+ εsr (g2 · e1) (g1 · e2) + εsr (g2 · e2) (g1 · e1)

(10)

Folglich lässt sich die Inverse der gesuchten Transformationsmatrix T−1 ableiten, welche

die lokalen natürlichen Dehnungen in lokale kartesische Dehnungen transformiert.

ε =

 εxx

εyy

2 εxy

 = T−1

 εrr

εss

2 εrs

 (11)

mit

T−1 =

 (g1 · e1)
2

(g2 · e1)
2

(g1 · e1) (g2 · e2)

(g1 · e2)
2

(g2 · e2)
2

(g1 · e2) (g2 · e1)

(g1 · e1) (g1 · e2) (g2 · e1) (g2 · e2) (g1 · e1) (g2 · e2) + (g2 · e1) (g1 · e2)



=
1

(J11J22 − J12J21)
2

 J2
22 J2

12 −J12J22

J2
21 J2

11 −J11J21

−2 J21J22 −2 J11J12 J11J22 + J12J21


(12)

Nach Invertierung der Matrix T−1 erhält man

T =

 J2
11 J2

12 J11J12

J2
21 J2

11 J21J22

2 J11J21 2 J12J22 J11J22 + J12J21

 (13)

Dies ist die gesuchte Transformationsmatrix T für die Transformation von lokalen natürli-

chen in lokalen kartesichen Dehnungen bzw. Spannungen nach Gleichung (11).
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3 Verschiebungsmethode

3.1 Einführung

In diesem Abschnitt wird das 4-knotige, isoparametrische Scheibenelement plane4n vor-

gestellt. Es gehört der Familie der lagrange Elemente an. Die Formulierung ist für geome-

trisch lineare, physikalisch nichtlineare Berechnungen ausgelegt. Aufgrund der geringen

Anzahl von Knoten und Knotenfreiheitsgraden ist es sehr übersichtlich und somit einfach

in das FE-Programmsystem SLang [Bucher, 2002] zu implementieren. Wie jedes isopara-

metrische Element soll es den Patch-Test bestehen.

Der Nachteil des Elementes liegt in der fehlerhaften Versteifung. Dies tritt besonders bei

schubbeanspruchten Elementen auf, welches die Beispiele im Abschnitt 5 verdeutlichen.

Auf den genauen Hintergrund des sogenannten Locking-Effektes wird im Anschnitt 4.2

näher eingegangen.

Im Folgenden wird die lineare Formulierung des finiten Elementes plane4n beschrieben,

anschließend kurz die Erweiterung auf die physikalisch nichtlineare Formulierung.

3.2 Element plane4n

3.2.1 Lineare Formulierung

Das finite Element plane4n, dargestellt in natürlichen Koordinaten, ist in Abbildung 1 zu

sehen. Diese zeigt die Anordnung der Knoten in natürlichen Koordinaten und die Lage

der Integrationspunkte (Gaußpunkte).

r

s

v4

u4

Knoten 3 (−1/−1)

Knoten 2 (−1/1)

Knoten 1 (1/1)

Knoten 4 (1/−1)

Int.pkt 1

Int.pkt 3

Int.pkt 2

Int.pkt 4

(−0,577.../−0,577...)

(0,577.../−0,577...)

(0,577.../ 0,577...)

(−0,577.../ 0,577...)

y, v

x, u

Abbildung 1: Knoten und Integrationspunktanordnung im natürlichen Koordinatensys-

tem (r,s)
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Das 4-knotige Scheibenelement hat bilineare Form- und Ansatzfunktionen.

h1 = 1
4
(1 + r)(1 + s) ; h2 = 1

4
(1 − r)(1 + s)

h3 = 1
4
(1 − r)(1 − s) ; h4 = 1

4
(1 + r)(1 − s)

(14)

Die partiellen Ableitungen der Formfunktionen ergeben sich zu

h1

∂r
= 1

4
(1 + s) ; h1

∂s
= 1

4
(1 + r)

h2

∂r
= −1

4
(1 + s) ; h2

∂s
= 1

4
(1 − r)

h3

∂r
= −1

4
(1 − s) ; h3

∂s
= −1

4
(1 − r)

h4

∂r
= 1

4
(1 − s) ; h4

∂s
= −1

4
(1 + r)

. (15)

Mit Hilfe der Gleichung (15) kann die Br-Matrix in lokalen natürlichen Koordinaten

erstellt werden.

Br =


∂
∂r

0

0 ∂
∂s

∂
∂s

∂
∂r

[
h1 0 h2 0 h3 0 h4 0

0 h1 0 h2 0 h3 0 h4

]

=


∂h1

∂r
0 ∂h2

∂r
0 ∂h3

∂r
0 ∂h4

∂r
0

0 ∂h1

∂s
0 ∂h2

∂s
0 ∂h3

∂s
0 ∂h4

∂s
∂h1

∂s
∂h1

∂r
∂h2

∂s
∂h2

∂r
∂h3

∂s
∂h3

∂r
∂h4

∂s
∂h4

∂r


(16)

Unter Zuhilfenahme der Jacobi-Matrix J nach Gleichung (1) können die partiellen Ab-

leitungen aus Gleichung (16) transformiert werden.

[
∂hi

∂x
∂hi

∂y

]
= J−1

[
∂hi

∂r
∂hi

∂s

]
mit i = 1, 2, 3, 4 (17)

Die B-Matrix im kartesischen Koordinatensystem ist demnach

B =


∂h1

∂x
0 ∂h2

∂x
0 ∂h3

∂x
0 ∂h4

∂x
0

0 ∂h1

∂y
0 ∂h2

∂y
0 ∂h3

∂y
0 ∂h4

∂y
∂h1

∂y
∂h1

∂x
∂h2

∂y
∂h2

∂x
∂h3

∂y
∂h3

∂x
∂h4

∂y
∂h4

∂x

 . (18)

Die Materialmatrix C für ebene, lineare Verzerrungszustände und isotropes Materialver-

halten ergibt sich mit dem E-Modul E und der Querdehnzahl ν zu

C =
E

1 − ν2


1 ν 0

ν 1 0

0 0
1 − ν

2

 . (19)
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Mit Hilfe von Gleichung (18) und Gleichung (19) kann nun die Steifigkeitmatrix erstellt

werden.

K =

∫
V

BT C B dV, K ∈ R8×8

(20)

Somit kann der Verschiebungsvektor d mit Hilfe der Gleichung (20) und dem Knoten-

lastvektor f berechnet werden.

d =
[

u1 v1 u2 v2 u3 v3 u4 v4

]T

= K−1 f , f ∈ R8 (21)

Die Dehnungen ε ergeben sich aus der Multiplikation der Gleichung (18) und der Glei-

chung (21) an der gewählten Stelle im Element. Da die Integrationspunkte für die nu-

merische Integration verwendet werden, werden auch vorzugsweise die Dehnungen an

diesen Stellen ausgewertet.

ε =

 εxx

εyy

2 εxy

 = B d (22)

Die Komponeten des Spannungstensors ergeben sich aus Gleichung (19) und Gleichung

(22).

σ =

 σxx

σyy

σxy

 = C ε (23)

3.2.2 Nichtlineare Formulierung

Die Erweiterung der vorhergehenden linearen Vorgehensweise auf physikalisch nichtli-

neare Probleme ist unkompliziert. Hierzu wird ein zusätzlicher Rückstellkraftvektor r

benötig.

r =

∫
V

BT σ dV, r ∈ R8 (24)

Da die Materialmatrix C im nichtlinearen Bereich von den Verzerrungen abhängt, ist eine

Iteration nötig. Der Rückstellkraftvektor r dient als Abbruchkriterium dieser Iteration,

zum Beispiel beim Newton-Raphson-Verfahren.
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4 Erweiterte Verschiebungsmethode

4.1 Einführung

Das in diesem Abschnitt dargestellte finite Element plane4n4eas ist ein 4-knotiges Schei-

benelement mit EAS-Formulierung nach [Simo and Rifai, 1990]. Die Enhanced Assumed

Strain Methode beruht auf einem erweiterten Verzerrungsansatz, welcher in diesem Fall

durch vier zusätzliche Moden definiert wird. Dieses erweiterte Element soll die Verstei-

fungseffekte des plane4n im Schubbereich kompensieren.

Im Folgenden wird zunächst der Locking-Effekt kurz beschrieben, der den Grund für die

Entwicklung der EAS-Methode darstellt. Danach wird der erweiterte Verzerrungsansatz

nach dem Prinzip von Hu-Washizu allgemein erläutert, bevor das finite Element pla-

ne4n4eas mit linearen und physikalisch nichtlinearen Ansätzen vorgestellt wird.

Dieses finite Element wurde in das FE-Programmsystem SLang [Bucher, 2002] implemen-

tiert.

4.2 Locking

Der Begriff Locking wird schon seit den sechziger Jahren für jede Art von Versteifungs-

problemen bei finiten Elementformulierungen benutzt. [Bischoff, 2001] versucht diesen

komplexen Begriff wie folgt zu bescheiben.

Locking ist der Effekt einer verschlechterten Konvergenzrate in Abhängigkeit

eines
”
kritischen“ Parameters. Die Grenze des Parameters ist infinitiv, die

der Konvergenzrate kann gegen Null streben.

Prinzipiell können diese Probleme nach [Bischoff, 2001] mechanische, mathematische oder

numerische Ursachen haben. Die einzelnen Versteifungsarten werden in
”
transverse shear

locking“,
”
volumetric locking“,

”
membran locking“ und

”
shear locking“ unterschieden.

Bei Scheibenelementen sind prinzipiell
”
shear locking“ und

”
volumetric locking“ möglich.

Das Letztere tritt nur bei elastisch inkompressiblen und geometrisch nichtlinearem Ma-

terialverhalten auf. Weiterhin kann man diese Art von Locking bei plastisch inkompres-

siblem Materialverhalten beobachten, bei dem die plastische Fließbedingung nach von

Mises gewählt wurde. Da für die hier betrachteten Scheibenelemente nur kompressibles

Materialverhalten vorausgesetzt wird, tritt bei dem 4-knotigen isoparametrischen Schei-

benelement plane4n nur das
”
shear locking“ auf. Diese Schubversteifungen können mit

Hilfe der EAS-Methode kompensiert werden.
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4.3 Erweiterter Verzerrungsansatz

In Anlehnung an [Andelfinger, 1991] geht der erweiterte Verzerrungsansatz auf das Prin-

zip von Hu-Washizu zurück. Demnach ergibt sich die innere Energie eines Elementes

zu

U =

∫
V

1

2
εT C ε − σT ε + σT Biso d dV . (25)

Die isoparametrische Biso-Matrix entspricht Gleichung (18) und ε = Biso d der Glei-

chung (22). Das Verzerrungsfeld wird im nächsten Schritt durch ein erweitertes Verzer-

rungsfeld ergänzt.

ε = Biso d + εeh (26)

Gleichung (26) eingesetzt in Gleichung (25) ergibt

U =

∫
V

1

2
(Biso d + εeh)T C (Biso d + εeh) − σT εeh dV . (27)

Die Spannungen σ und die erweiterten Verzerrungsfelder εeh werden so aufeinander ab-

gestimmt, das sie orthogonal aufeinander stehen.

∫
V

σT εeh dV = 0 (28)

Es bleiben somit nur noch die Verschiebungen d und die erweiterten Verzerrungen εeh

als zu bestimmende Größen in Gleichung (27) übrig. Die Spannungen können mindestens

konstante Anteile enthalten. Somit kann die Bedingung nach Gleichung (28) vereinfacht

werden.

∫
V

εeh dV = 0 (29)

Die einzige Bedingung für die Wahl des erweiterten Verschiebungsfeldes stellt somit Glei-

chung (29) dar. Die zusätzlichen Dehnungen integriert über das Element sollen sich auf-

heben. Diese Bedingung wird im Folgenden verwendet, um den erweiterten Ansatz zu

wählen bzw. zu überprüfen.
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4.4 Element plane4n4eas

4.4.1 Lineare Formulierung

Es werden zunächst die Ansatzfunktionen des isoparametrischen plane4n Elementes über-

nommen und um 2 Ansatzfunktionen erweitert.

h1 = 1
4
(1 + r)(1 + s) ; h2 = 1

4
(1 − r)(1 + s)

h3 = 1
4
(1 − r)(1 − s) ; h4 = 1

4
(1 + r)(1 − s)

φ1 = 1
2
r2 ; φ2 = 1

2
s2

(30)

Die Ableitungen ergeben sich zu

h1

∂r
= 1

4
(1 + s) ; h1

∂s
= 1

4
(1 + r)

h2

∂r
= −1

4
(1 + s) ; h2

∂s
= 1

4
(1 − r)

h3

∂r
= −1

4
(1 − s) ; h3

∂s
= −1

4
(1 − r)

h4

∂r
= 1

4
(1 − s) ; h4

∂s
= −1

4
(1 + r)

φ1

∂r
= r ; φ1

∂s
= 0

φ2

∂r
= 0 ; φ2

∂s
= s

. (31)

Die komplette B-Matrix nach der EAS-Methode in kartesischen Koordinaten setzt sich

nun zusammen aus der isoparametrischen Biso-Matrix nach Gleichung (18) und einer

Beh-Matrix, die infolge der zusätzlichen Moden entsteht.

B = [Biso|Beh] , B ∈ R3×12, Biso ∈ R3×8, Beh ∈ R3×4 (32)

Die isoparametrische Biso-Matrix wird nach dem gleichen Prinzip erzeugt wie in Ab-

schnitt 3.2.1 gezeigt. Nachfolgend wird die Berechnung der Beh-Matrix beschrieben.

Die folgende auf das natürliche Koordinatensystem bezogende Beh,r-Matix wird nach

dem gleichen Verfahren erzeugt, wie die isoparametrische Biso,r-Matrix nach Gleichung

(16).

Beh,r =


φ1

∂r
0 φ2

∂r
0

0 φ1

∂s
0 φ2

∂s
φ1

∂s
φ1

∂r
φ2

∂s
φ2

∂r

 =

 r 0 0 0

0 0 0 s

0 r s 0

 (33)

Um der Bedingung nach Gleichung (29) zu genügen, muss die Beh,r-Matix mit Hilfe der

Transformationsmatrix T nach Gleichung (13) in kartesische Koordinaten transformiert

werden. Da die numerische Integration über die Gaußpunktintegration durchgeführt wird,

muss dies für alle Integrationspunkte i vorgenommen werden. Die Matrizen J0 und T0
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sind dabei die Jacobi-Matrix J und die Transformationsmatrix T ausgewertet im Ele-

mentmittelpunkt (r = s = 0).

Beh =
detJ0

detJi

T0
−1 Beh,r (34)

Die Wichtung der Integrationspunkte wird dabei über den Faktor
detJ0

detJi

vorgenommen.

∫ 1

−1

∫ 1

−1

detJ0

detJi

T0
−1 Beh,r α detJi drds = 0 (35)

Der Vektor α stellt dabei die zusätzlichen Freiheitsgrade der zusätzlichen Moden dar und

wird noch näher erläutert. Da detJ0, T0
−1 und α nur konstante Terme innerhalb eines

Elementes enthalten, vereinfacht sich Gleichung (35) zu

∫ 1

−1

∫ 1

−1

Beh,r drds = 0 (36)

Diese von Gleichung (29) abgeleitete weiterhin vereinfachte Bedingung ist für die gewähl-

ten zusätzlichen Moden einzuhalten. Die Wahl der zusätzlichen Moden ist demnach nicht

direkt an eine physikalische Bedingung gebunden.

Setzt man nun diese neue B-Matrix nach Gleichung (32) in die Gleichung (20) ein, so

erhält man

Kiso+eh =

∫
V

[Biso|Beh]T C [Biso|Beh] dV , Kiso+eh ∈ R12×12

=

[
K11 K12

K21 K22

] (37)

mit

K11 =

∫
V

Biso
T C Biso dV , K11 ∈ R8×8

K12 =

∫
V

Biso
T C Beh dV , K12 ∈ R8×4

K21 =

∫
V

Beh
T C Biso dV = K12

T , K21 ∈ R4×8

K22 =

∫
V

Beh
T C Beh dV , K22 ∈ R4×4.

(38)
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Analog zur Gleichung (21) ergibt sich folgende Gleichung.[
K11 K12

K21 K22

] [
d

α

]
=

[
f

0

]
, d ∈ R8, α ∈ R4, f ∈ R8, 0 ∈ R4 (39)

Da den α-Werten keine physikalische Bedeutung oder resultierenden Kräfte zugeordnet

werden können, wird die entsprechende rechte Seite dem 0-Vektor gleichgesetzt. Die α-

Werte ergeben sich aus der letzten Zeile der Gleichung (39)

K21 d + K22 α = 0 (40)

zu

α = −K22
−1K12

T d. (41)

Nach [Freischläger, 2000] ist die Invertierung der Matrix K22 für eine positiv definite

Werkstoffmatrix C und kleine Verzerrungen stets möglich. Probleme könnte es jedoch

im geometrisch und/oder physikalisch nichtlinearem Bereich geben. Die kondensierte Ele-

mentsteifigkeitsmatrix K nach der EAS-Methode ergibt sich aus Gleichung (41) einge-

setzt in die 1. Zeile der Gleichung (39).

K11 d + K12(−K22
−1K12

T d) = f

(K11 − K12 K22
−1K12

T )d = f

(42)

Dementsprechend ist die kondensierte Elementsteifigkeitsmatrix

K = K11 − K12 K22
−1K12

T , K ∈ R8×8. (43)

Der Verschiebungsvektor d wird nach Gleichung (21) berechnet werden. Die Gesamtdeh-

nungen für das plane4n4eas ergeben sich zu

ε =

 εxx

εyy

2 εxy

 = Biso d + Beh α. (44)

Analog dem isoparametrischen Element berechnen sich die Spannungen mit Hilfe der

Dehnungen ε (Gleichung (44)) und der Materialmatrix C (Gleichung (19)) nach Glei-

chung (23).
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4.4.2 Nichtlineare Formulierung

Um von der linearen Formulierung zur Nichtlinearen zu gelangen, ist wie beim isopara-

metrischen Element neben dem geeigneten Materialgesetz auch der Rückstellkraftvektor

r nötig. Dieser berechnet sich nach [Freischläger, 2000]

r = riso − K12K22
−1reh , r ∈ R8 (45)

mit

reh =

∫
V

Beh
T σ dV , reh ∈ R4 (46)

und dem isoparametrischen Rückstellkraftvektor riso nach Gleichung (24). Dabei ist

zu bemerken, das der Rückstellkraftvektor reh der zusätzlichen Moden für korrekte α-

Werte stets dem 0-Vektor entspricht. Dies folgt mit εeh = Beh α und α = const indirekt

aus Gleichung (28). Da sich die EAS-Parameter, z.B. während einer Newton-Raphson-

Iteration, infolge der veränderten Material- und Steifigkeitsmatrizen ändern, müssen diese

ebenso wie die Verschiebungen d iteriert werden.

Im Folgenden werden nun vier verschiedene Möglichkeiten zur Berechnung der EAS-Para-

meter zur Verwendung in einer Newton-Raphson-Iteration vorgestellt. Die einzelnen Ver-

fahren werden unter anderem durch Flussdiagramme in übersichtlicher Form dargestellt

und sind nur für physikalisch nichtlineare Berechnungen gültig. In [Freischläger, 2000] ist

die Erweiterung auf eine geometrisch nichtlineare Formulierung nachzulesen.

Variante 1 - Globale Iteration der EAS-Parameter

Diese Variante war ein erster Versuch, die korrekten EAS-Parameter zu erhalten. Der

Quellcode soll hierbei keine speziellen Algorithmen zur Iteration der EAS-Parameter vor-

sehen. Vielmehr soll die globale volle Newton-Raphson-Iteration automatisch die richtige

Lösung bestimmen. Diese Idee wurde jedoch nicht getestet und aus folgenden Gründen

verworfen.

Da nicht zwischen plastizierenden und elastischen Elementen unterschieden werden kann,

wird der zusätzliche Rechenaufwand für die Bestimmung der EAS-Parameter sehr groß.

Dieser spiegelt sich in der Bestimmung der globalen Steifigkeitsmatrix und im Lösen des

globalen Gleichungssystems wieder.

Weiterhin ist es möglich, dass im Verlauf der Laststeigerung ein Zustand erreicht wird,

der vor der Iteration der EAS-Parameter plastisch ist und durch die Abminderung der

Steifigkeit wieder in den elastischen Bereich zurückschwenkt.

Somit birgt dieses Verfahren nicht nur einen hohen Rechenaufwand, sondern auch eine

erhöhte Gefahr von Instabilitäten in sich. Es ist deshalb unbrauchbar.
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Variante 2 - Lokale Iteration der EAS-Paramenter

Hierbei handelt es sich um eine Interation auf lokaler Elementebene. Die Iteration wird

demzufolge nur auf plastizierende Elemente angewendet. Deshalb ist diese Variante ge-

rade bei wenig plastizierenden Elementen innerhalb eines Systems effektiver als Variante

1.

Neues Verschiebungsinkrement ∆d(i)

⇓
Berechne neue Gesamtverschiebungen

d(i+1) = d(i) + ∆d(i)

⇓
Berechne durch Iteration α(i+1):

⇓

Startwert α1 = α(i)

v = 0

DO v = v + 1

∆αv+1 = −K22
−1(αv)K12

T (αv)d
(i+1)

WHILE ||αv+1 − αv|| >TOL

α(i+1) = αv+1

⇓
Berechne ε(i+1)

und damit Spannungen σ(i+1) und Materialmatrix C(i+1)

⇓
Berechne mittels statischer Kondensation eine neue

effektive Elementsteifigkeitsmatrix

K(i+1) = K11
(i+1) − K12

(i+1)
[
K22

(i+1)
]−1

K12
(i+1)T

und einen neuen effektiven Rückstellkraftvektor

r(i+1) = riso
(i+1) − K12

(i+1)
[
K22

(i+1)
]−1

reh
(i+1)

Abbildung 2: Variante 2; Lokale Iteration der EAS-Parameter

Da die EAS-Parameter im nichtlinearen Bereich von der veränderten Materialmatrix C

abhängen, müssen diese iteriert werden. Das Abbruchkriterium stellt hier die Differenz
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zwischen den α-Werten des aktuellen und des vorhergenden Iterationsschrittes dar. Diese

sollen gegen 0 streben bzw. unterhalb einer Toleranzgrenze TOL liegen.

Obwohl nur die EAS-Parameter der plastizierenden Elemente berechnet werden ist die-

ses Verfahren aufwendig, da für jeden inneren Iterationsschritt die komplette Element-

steifigkeitsmatrix K berechnet werden muss. Die gewählten Startwerte für die EAS-

Parameter werden aus dem vorhergehende Iterationsschritt übernommen. Für starke

Nichtlinearitäten und/oder große Intervallschritte sind diese nicht dicht genug an der

richten Lösung. Deshalb ist es möglich, dass sich keine Konvergenz einstellt und somit

falsche Lösungen entstehen.

Variante 3 - Lokale explizite Berechnung der EAS-Parameter

Hierbei handelt es sich um ein klassisches Verfahren zur Bestimmung der Elementsteifig-

keitsmatrix nach [Freischläger, 2000]. Die Änderung der EAS-Parameter ∆α(i) im Schitt

i wird durch Lösung eines linearen Gleichungssystemes gewonnen.

K12
(i)T

∆d(i) + K22
(i)∆α(i) = reh

(i) (47)

Diese Gleichung erhält man analog zur letzten Zeile der Gleichung (39), mit dem Un-

terschied, dass hier die Inkremente und nicht die Verschiebungen und α-Werte genutzt

werden. Somit ergibt sich für ∆α(i) im i-ten Schritt.

∆αi = K22
(i)−1

reh − K22
(i)−1

K12
(i)T

∆d(i) (48)

Für lineare Berechnungen ist dieses Vorgehen exakt. Im nichtlinearen Bereich stellt Glei-

chung (48) nur eine Näherung dar. Somit entspricht der Rückstellkraftvektor reh nicht

ausreichend genau dem 0-Vektor und muss deshalb mit berücksichtigt werden. Anschlie-

ßend werden die EAS-Parameter des folgenden Schrittes wie folgt bestimmt.

α(i+1) = α(i) + ∆α(i) (49)

Der Nachteil dieser Methode ist der numerische Aufwand zur Bestimmung der Matri-

zen K22
(i)−1

und K12
(i)T

aus dem vorhergehenden i-ten Schritt. Alternativ können die-

se auch gespeichert werden, was den Aufwand nicht mindert. Da es sich nur um eine

Näherungslösung handelt, müssen die Lastschritte ausreichend klein gewählt werden, um

konvergierende Lösungen zu erhalten. Die eigentliche Iteration wird global z.B. über eine

Newton-Raphson-Iteration durchgeführt. Somit ist der Gesamtaufwand zur Berechnung

der globalen Steifigkeitsmatrix und zum Lösen des Gleichungssystems für jeden Last-

schritt sehr groß.
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Neues Verschiebungsinkrement ∆d(i)

⇓
Berechne neue Gesamtverschiebungen

d(i+1) = d(i) + ∆d(i)

⇓
Berechne mit d(i) und α(i):

K12
(i), K22

(i) und reh
(i)

⇓
Berechne ∆α(i) als Lösung des linearen Gleichungssystemes:

K22
(i)∆α(i) = reh

(i) − K12
(i)T

∆d(i)

⇓
Berechne α(i+1) = α(i) + ∆α(i)

⇓
Berechne ε(i+1)

und damit Spannungen σ(i+1) und Materialmatrix C(i+1)

⇓
Berechne mittels statischer Kondensation eine neue

effektive Elementsteifigkeitsmatrix:

K(i+1) = K11
(i+1) − K12

(i+1)
[
K22

(i+1)
]−1

K12
(i+1)T

und einen neuen effektiven Rückstellkraftvektor

r(i+1) = riso
(i+1) − K12

(i+1)
[
K22

(i+1)
]−1

reh
(i+1)︸ ︷︷ ︸

6= 0

Abbildung 3: Variante 3; Lokale explizite Bestimmung der EAS-Parameter

Variante 4 - Lokale implizite Iteration der EAS-Parameter

Dieses Verfahren, von [Freischläger, 2000] vorgeschlagen, iteriert die EAS-Parameter lo-

kal. Als Abbruchkriterium wird der Rückstellkraftvektor, allein berechnet aus den zusätz-

lichen Verschiebungsfeldern, verwendet. Dieser muss wiederum gegen den 0-Vektor kon-

vergieren.

Die Qualität des 0-Vektors wird mit der euklidischen Norm überprüft, die gegen 0 kon-

vergieren bzw. unterhalb einer gewählten Toleranzgrenze TOL liegen soll. Diese Toleranz-

grenze statisch festzulegen ist nicht ratsam, da die Anzahl der numerisch auswertbaren
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Nachkommastellen von der Matrix K22 abhängt und damit in erster Linie vom Verfes-

tigungsmodul, welches einen charakteristischen Parameter für jedes Element darstellt.

Weiterhin ist eine Schranke für die Anzahl der Iterationsschritte zu empfehlen.

Neues Verschiebungsinkrement ∆d(i)

⇓
Berechne neue Gesamtverschiebungen

d(i+1) = d(i) + ∆d(i)

⇓
Berechne durch Iteration α(i+1) aus der Gleichung

reh(d(i+1), α(i+1)) = 0 für festes d(i+1):

Startwert α1 = α(i)

v = 0

DO v = v + 1

∆αv = −K22
−1(αv)reh(αv)

αv+1 = αv + ∆αv

WHILE ||reh(αv+1)|| >TOL

α(i+1) = αv+1

⇓
Berechne ε(i+1)

und damit Spannungen σ(i+1) und Materialmatrix C(i+1)

⇓
Berechne mittels statischer Kondensation eine neue

effektive Elementsteifigkeitsmatrix

K(i+1) = K11
(i+1) − K12

(i+1)
[
K22

(i+1)
]−1

K12
(i+1)T

und einen neuen effektiven Rückstellkraftvektor

r(i+1) = riso
(i+1) − K12

(i+1)
[
K22

(i+1)
]−1

reh
(i+1)︸ ︷︷ ︸

≈ 0

Abbildung 4: Variante 4; Lokale implizite Iteration der EAS-Parameter
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Dieses Verfahren ist je nach Anzahl der Iterationsschritte v aufgrund der mehrmaligen

Berechnung der K22
−1 Matrix und des reh Vektors mehr oder weniger aufwendiger als

das Verfahren nach Variante 3.

Dennoch wurde dieses Verfahren zur Berechnung der EAS-Parameter in das FE-Pro-

grammsystem SLang [Bucher, 2002] implemetiert. Es hat sich als sehr stabil erwiesen

und bestimmt die EAS-Parameter exakt, d.h. der Rückstellkraftvektor reh entspricht

innerhalb der Toleranzgrenze dem 0-Vektor.

Anmerkungen zur Implementation

Die Bestimmung der EAS-Parameter muss im FE-Programmsystem SLang [Bucher, 2002]

in mehreren Routinen gewährleistet werden, da die Reihenfolge der Berechnung der

Steifigkeitsmatrix, Rückstellkräfte und Spannungen bzw. Dehnungen nicht an eine be-

stimmte Struktur gebunden ist, sondern vom Nutzer selbst bestimmt werden kann.

Um dies beibehalten zu können, wird die Routine zur Iteration der EAS-Parameter

elem plane4n4eas alpha.c in der Steifigkeitsroutine elem plane4n4eas stiff.c, in der Rück-

stellkraftroutine elem plane4n4eas resforce.c und in der Spannungsberechnungsroutine

stress build.c aufgerufen. Dabei werden zu Beginn der Iteration als Startwerte die α-Werte

aus dem Speicher genutzt und nach der Iteration die neuen α-Werte abgespeichert. Dem-

zufolge wird die eigentliche Iteration, z.B. bei Berechnung des Rückstellkraftvektors un-

mittelbar nach der Berechnung der Steifigkeitsmatrix, nicht aktiviert. Lediglich eine Kon-

trolle der α-Werte wird vorgenommen. Auf diese Weise konnte der numerische Aufwand

gering gehalten werden.
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5 Numerische Beispiele

5.1 Einführung

Zur Überprüfung der Vollständigkeit der Elementansätze, des Konvergenzverhaltens, so-

wie dem Verhalten bei unterschiedlicher Netzverzerrung werden nun vier Testbeispiele

zum Vergleich der plane4n und plane4n4eas Elemente durchgeführt.

Die angeführten Tests und Materialparameter werden teilweise den numerischen Beispie-

len von [Andelfinger, 1991] nachempfunden.

5.2 Patch-Test

Der Patch-Test, auch Fleckentest genannt, soll die Fähigkeit des Elementes überprüfen,

bei beliebig verzerrter Geometrie einen Zustand konstanter Spannungen und Verzer-

rungen darstellen zu können. Dieser Test gilt als bestanden, wenn alle Elementspan-

nungen für jeden beliebigen Integrationspunkt (Flecken) und alle Elementverzerrungen

für jeden Knoten mit der analytischen Lösung übereinstimmen. Dies muss sowohl für

lineare als auch für nichtlineare Berechnungen gültig sein.

8/74/7

8/3

10/00/0

0/10 10/10

E = 1000
ν = 0.3

3/4

y

x

σxx
c σ c

yy σ c
xy

Abbildung 5: Elementkonfiguration und Lastfälle des Patch-Testes

Wenn der Patch-Test erfüllt ist, ist nach [Bathe, 1996] die Konvergenz, auch wenn diese

nicht notwendig monoton sein braucht und sehr langsam eintreten kann, sichergestellt.
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Ebenfalls stellt der Patch-Test eine Art Vollständigkeitsbedingung für eine Elementgrup-

pierung dar. Nach [Andelfinger, 1991] können, bei entsprechender Elementkonfiguration,

nicht alle zero energy modes eines Elementes aufgedeckt werden. Somit ist eine zusätz-

liche Eigenwertanalyse oder ein Ein-Element-Test mit allgemeiner Belastung für eine

vollständige Elementüberprüfung notwendig.

Bei den hier vorliegenden 4-knotigen Scheibenelemten sind genau drei konstante Span-

nungszustände möglich. In Abbildung 5 ist die gewählte Elementkonfiguration, die na-

hezu alle Varianten vom symmetrischen Trapez bis zum vollständig verzerrten Element

enthält, zu sehen. Weiterhin zeigt Abbildung 5 die gewählten Lagerungsbedingungen und

Belastungen für jeden erzeugten konstanten Spannungszustand.

Abbildung 6 zeigt die Resultate des Patchtestes beim Übergang vom linearen zum nicht-

linearen Materialverhalten für die Spannungskomponente σxx. Hierbei wurde die Fließ-

grenze zu 2 gewählt. Die Verfestigungsmoduli stehen im Verhältnis von 1000 zu 100.

Die anderen Material- und Geometriewerte sind Abbildung 5 zu entnehmen. Auch hier

ist die Spannung in allen Integrationspunkten gleich. Alle Verschiebungen, Verzerrungen

und Spannungen sind vorhersehbar.

Abbildung 6: Kraft-Verschiebungs-Diagramm und Spannungs-Dehnungs-Diagramm für

den Patch-Test der Spannungkomponente σxx

Die beiden hier vorgestellten 4-knotigen Scheibenelemente erfüllen den linearen und nicht-

linearen Patch-Test. Da die zusätzlichen Moden der EAS-Methode nicht aktiviert werden,

sind die resultierenden Spannungen und Verzerrungen für beide Elemente gleich.

5.3 Kragbalken mit linearer Momentenbeanspruchung

Mit dem Patch-Test wurde die Vollständigkeit der Elemente kontrolliert. Nun soll der

Einfluss der Elementverzerrung überprüft und die beiden Scheibenelemente verglichen

werden. Es wird hierzu in Anlehnung an [Andelfinger, 1991] ein Kragbalken bestehend

aus 4 Elementen mit unterschiedlicher Verzerrung nach Abbildung 7 gewählt. Die Er-

gebnisse sind auf eine FE-Lösung von 0.52175 normiert. Als zusätzlichen Vergleich wird

das EAS-4 Element von [Andelfinger, 1991] angeführt, welches die gleichen Ansätze wie
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das plane4n4eas Element hat. Auffallend ist der starke Versteifungseffekt des plane4n

Elementes, welches schon im unverzerrten Elementnetz vorliegt. Das plane4n4eas Ele-

ment hingegen zeigt ein sehr gutes Verhalten im unverzerrten und mäßiges im verzerrten

Elementnetz. Je größer der Verzerrungsgrad, desto größer werden auch hier die Abwei-

chungen.

F

F 4.
0

4.04.04.04.0

5.0 4.0 4.0

4.0 4.0 4.0 4.0

3.0

6.0 4.0 4.0 2.0

2.0 4.0 4.0 6.0

h = 1.0
F = 1.0

E = 1000
ν = 0.0

B

C

A

Abbildung 7: Kragarm mit unterschiedlich verzerrtem Elementnetz

plane4n plane4n4eas EAS-4 plane9n

A 0.68 1.00 1.00 1.02

B 0.60 0.98 0.98 1.02

C 0.35 0.93 0.87 1.02

Tabelle 1: Durchbiegung der Kragarmspitze (Oberkante); Solllösung = 1.00

Ungeklärt ist der Unterschied in der Verzerrungskonfiguration C zwischen dem Element

plane4n4eas und dem Element EAS-4 von [Andelfinger, 1991] trotz identischer Ansätze.

Weiterhin wird zum Vergleich ein 9-knotiges isoparametrisches lagrange Scheibenelement

plane9n mit quadratischen Form- und Ansatzfunktionen angeführt. Ein Einfluss der Netz-

verzerrung bei diesem Element ist nicht zu erkennen, dennoch sind die Abweichungen zur

analytischen Lösung (0.5120), zumindest bei unverzerrter Elementkonfiguration, größer.



5 NUMERISCHE BEISPIELE 21

5.4 Kragbalken mit konstanter Momentenbeanspruchung

Abbildung 8 zeigt ein weiteres Beispiel, um die Versteifungseffekte mit zunehmender

Netzverzerrung zu untersuchen. In diesem Fall wird ein konstantes Moment auf einen

Kragarm bestehend aus zwei Elementen aufgebracht.

Hier können die gleichen Feststellungen getroffen werden wie im Beispiel mit linearer

Momentenbeanspruchung. Das plane4n Element weist schon im unverzerrtem Zustand

erhebliche Abweichungen zur analytisch exakten Lösung auf, wobei das plane4n4eas Ele-

ment mit unverzerrtem Elementnetz exakte Ergebnisse liefert, und sich erst mit fort-

schreitender Verzerrung verschlechtert. In diesem Fall entspricht der Verlauf des Elemen-

tes plane4n4eas dem Verlauf des Elementes EAS-4 von [Andelfinger, 1991].

Auch hier zeigt sich beim Element plane9n kein Einfluss aus der Netzverzerrung, es kann

sogar auf Grund der quadratischen Form- und Ansatzfunktionen die Verschiebungen trotz

Verzerrung exakt darstellen.
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Abbildung 8: Einfluss der Netzverzerrung auf die Durchbiegung
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5.5 Aktivierung der EAS-Parameter unter Plastizierung

Mit dem nichtlinearen Patch-Test wurde bereits die Richtigkeit von nichtlinearen Be-

rechnungen überprüft. Dabei wurden jedoch nicht die EAS-Parameter aktiviert. Um die

Iteration der EAS-Parameter unter Plastizierung zu überprüfen, wird das folgende Bei-

spiel angeführt.

Hierzu wird die Geometrie und Lasteintragung aus dem vorhergehenden Beispiel nach

Abbildung 8 übernommen. Das bilineare Materialgesetz hat die Verfestigungsmoduli 3000

und 600. Die Fließgrenze wird zu 3 definiert. Abbildung 9 zeigt die Last-Verschiebungs-

Kurven für verschiedene Verzerrungen, welche mit a charakterisiert werden.

 0.0  0.5  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5E-1
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 2.0
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 4.0

 5.0

 6.0

 7.0E-1
Force

a = 4.5
a = 2.0
a = 1.0

a = 0.5

a = 0.0

Abbildung 9: Einfluss der Netzverzerrung auf die Durchbiegung v unter Plastizierung

Die unverzerrte Elementkonstellation (a = 0.0) zeigt das erwartete Verhalten eines Krag-

trägers mit konstantem Moment im linearen und nichtlinearen Verlauf.

Wie jedoch das vorhergehende lineare Beispiel vermuten lässt, kann auch hier im nicht-

linearem Bereich der Versteifungseffekt mit zunehmender Verzerrung gezeigt werden.

Sowohl der 1. als auch der 2. Verfestigungsmodul, ablesbar aus Abbildung 9, ist höher

als der Vorgegebene.

Auffallend ist der Bereich in der Nähe der Plastizierungsgrenze. Hier ist ein allmähli-

cher Anstiegswechsel, im Gegensatz zu den unverzerrten Elementen, festzustellen. Bei

der unverzerrten Elementkonfiguration sind die von Mises-Vergleichsspannungen in je-

dem Integrationspunkt der beiden Elemente gleich. Die von Mises-Vergleichsspannungen

der verzerrten Konfiguration sind jedoch unterschiedlich. Aus diesem Grunde plastizieren

nicht alle Integrationspunkte bei gleicher Belastung. Der ausgerundete Anstieg im Be-

reich der Fließgrenze ist somit mit einem schrittweisen Plastizieren des Gesamtsystemes

zu erklären.
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6 Zusammenfassung und Ausblick

Die vorliegende Studienarbeit konnte anhand eines 4-knotigen Scheibenelementes die

Vor- und Nachteile der EAS-Formulierung aufzeigen. Klare Vorteile sind bei unverzerr-

ten Elementkonfigurationen zu beobachten. Hier kann die EAS-Formulierung die ana-

lytische Lösung exakt bzw. sehr genau abbilden. Gegenüber dem 4-knotigen Verschie-

bungselement konnte die numerische Lösung, aufgrund der
”
shear locking“-Elimination,

wesentlich verbessert werden. Der Vergleich mit 9-knotigen Verschiebungselementen zeigt

jedoch, zumindest in den angeführten Beispielen, die Schwachstellen bei verzerrten Ele-

mentkonfigurationen.

In nichtlinearen Berechnungen hängt die Effizienz der Berechnung stark von willkürlich

festlegbaren Parametern ab. Hier besteht noch erheblicher Forschungsbedarf, um eine

höhere Effizienz, unabhängig vom Nutzer, zu erzielen.

Um dieses Element im Rahmen des Sonderforschungsbereiches 524 vollwertig für die sto-

chastische Modellierung von Materialparametern in Zufallsfeldern [Brenner, 1995] nutzen

zu können, sind noch einige Erweiterungen notwendig. Dies ist Gegenstand der momen-

tanen Forschung.
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A CD-ROM

Die beigelegte CD-ROM enthält einige wichtige Dateien, die es dem Leser oftmals er-

leichtern, den dargestellten Sachverhalt besser nachzuvollziehen. So findet man die an-

geführten Beispiele mit einer Linux-kompatiblen SLang -Version, sowie die implementier-

ten Quellcode-Dateien.

Weiterhin beinhaltet diese CD eine PDF-Version des vorliegenden Schriftstückes und

einen Teil der verwendeten Literatur.
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